copulas.multivariate.gaussian module
GaussianMultivariate module.
- class copulas.multivariate.gaussian.GaussianMultivariate(distribution=<class 'copulas.univariate.base.Univariate'>, random_state=None)[source]
Bases:
MultivariateClass for a multivariate distribution that uses the Gaussian copula.
- Parameters:
distribution (str or dict) – Fully qualified name of the class to be used for modeling the marginal distributions or a dictionary mapping column names to the fully qualified distribution names.
- columns = None
- correlation = None
- cumulative_distribution(X)[source]
Compute the cumulative distribution value for each point in X.
- Parameters:
X (pandas.DataFrame) – Values for which the cumulative distribution will be computed.
- Returns:
Cumulative distribution values for points in X.
- Return type:
numpy.ndarray
- Raises:
NotFittedError – if the model is not fitted.
- fit(X)[source]
Compute the distribution for each variable and then its correlation matrix.
- Parameters:
X (pandas.DataFrame) – Values of the random variables.
- classmethod from_dict(copula_dict)[source]
Create a new instance from a parameters dictionary.
- Parameters:
params (dict) – Parameters of the distribution, in the same format as the one returned by the
to_dictmethod.- Returns:
Instance of the distribution defined on the parameters.
- Return type:
- probability_density(X)[source]
Compute the probability density for each point in X.
- Parameters:
X (pandas.DataFrame) – Values for which the probability density will be computed.
- Returns:
Probability density values for points in X.
- Return type:
numpy.ndarray
- Raises:
NotFittedError – if the model is not fitted.
- sample(num_rows=1, conditions=None)[source]
Sample values from this model.
- Argument:
- num_rows (int):
Number of rows to sample.
- conditions (dict or pd.Series):
Mapping of the column names and column values to condition on.
- Returns:
Array of shape (n_samples, *) with values randomly sampled from this model distribution. If conditions have been given, the output array also contains the corresponding columns populated with the given values.
- Return type:
numpy.ndarray
- Raises:
NotFittedError – if the model is not fitted.
- to_dict()[source]
Return a dict with the parameters to replicate this object.
- Returns:
Parameters of this distribution.
- Return type:
dict
- univariates = None