copulas.bivariate.gumbel module
Gumbel module.
- class copulas.bivariate.gumbel.Gumbel(*args, **kwargs)[source]
Bases:
BivariateClass for clayton copula model.
- compute_theta()[source]
Compute theta parameter using Kendall’s tau.
On Gumbel copula \(\tau\) is defined as \(τ = \frac{θ−1}{θ}\) that we solve as \(θ = \frac{1}{1-τ}\)
- copula_type = 2
- cumulative_distribution(X)[source]
Compute the cumulative distribution function for the Gumbel copula.
The cumulative density(cdf), or distribution function for the Gumbel family of copulas correspond to the formula:
\[C(u,v) = e^{-((-\ln u)^{\theta} + (-\ln v)^{\theta})^{\frac{1}{\theta}}}\]- Parameters:
X (np.ndarray)
- Returns:
cumulative probability for the given datapoints, cdf(X).
- Return type:
np.ndarray
- invalid_thetas = []
- partial_derivative(X)[source]
Compute partial derivative of cumulative distribution.
The partial derivative of the copula(CDF) is the conditional CDF.
\[F(v|u) = \frac{\partial C(u,v)}{\partial u} = C(u,v)\frac{((-\ln u)^{\theta} + (-\ln v)^{\theta})^{\frac{1}{\theta} - 1}} {\theta(- \ln u)^{1 -\theta}}\]- Parameters:
X (np.ndarray)
y (float)
- Returns:
numpy.ndarray
- percent_point(y, V)[source]
Compute the inverse of conditional cumulative distribution \(C(u|v)^{-1}\).
- Parameters:
y (np.ndarray) – value of \(C(u|v)\).
v (np.ndarray) – given value of v.
- probability_density(X)[source]
Compute probability density function for given copula family.
The probability density(PDF) for the Gumbel family of copulas correspond to the formula:
\[\begin{align} c(U,V) &= \frac{\partial^2 C(u,v)}{\partial v \partial u} &= \frac{C(u,v)}{uv} \frac{((-\ln u)^{\theta} # noqa: JS101 + (-\ln v)^{\theta})^{\frac{2} # noqa: JS101 {\theta} - 2 }}{(\ln u \ln v)^{1 - \theta}} # noqa: JS101 ( 1 + (\theta-1) \big((-\ln u)^\theta + (-\ln v)^\theta\big)^{-1/\theta}) \end{align}\]- Parameters:
X (numpy.ndarray)
- Returns:
numpy.ndarray
- theta_interval = [1, inf]