CopulaGAN Model

In this guide we will go through a series of steps that will let you discover functionalities of the CopulaGAN model, including how to:

  • Create an instance of CopulaGAN.

  • Fit the instance to your data.

  • Generate synthetic versions of your data.

  • Use CopulaGAN to anonymize PII information.

  • Customize the data transformations to improve the learning process.

  • Specify the column distributions to improve the output quality.

  • Specify hyperparameters to improve the output quality.

What is CopulaGAN?

The sdv.tabular.CopulaGAN model is a variation of the CTGAN Model which takes advantage of the CDF based transformation that the GaussianCopulas apply to make the underlying CTGAN model task of learning the data easier.

Let’s now discover how to learn a dataset and later on generate synthetic data with the same format and statistical properties by using the CopulaGAN class from SDV.

Quick Usage

We will start by loading one of our demo datasets, the student_placements, which contains information about MBA students that applied for placements during the year 2020.

Warning

In order to follow this guide you need to have ctgan installed on your system. If you have not done it yet, please install ctgan now by executing the command pip install sdv in a terminal.

In [1]: from sdv.demo import load_tabular_demo

In [2]: data = load_tabular_demo('student_placements')

In [3]: data.head()
Out[3]: 
   student_id gender  second_perc  high_perc high_spec  degree_perc degree_type  work_experience  experience_years  employability_perc mba_spec  mba_perc   salary  placed start_date   end_date duration
0       17264      M        67.00      91.00  Commerce        58.00    Sci&Tech            False                 0                55.0   Mkt&HR     58.80  27000.0    True 2020-07-23 2020-10-12      3.0
1       17265      M        79.33      78.33   Science        77.48    Sci&Tech             True                 1                86.5  Mkt&Fin     66.28  20000.0    True 2020-01-11 2020-04-09      3.0
2       17266      M        65.00      68.00      Arts        64.00   Comm&Mgmt            False                 0                75.0  Mkt&Fin     57.80  25000.0    True 2020-01-26 2020-07-13      6.0
3       17267      M        56.00      52.00   Science        52.00    Sci&Tech            False                 0                66.0   Mkt&HR     59.43      NaN   False        NaT        NaT      NaN
4       17268      M        85.80      73.60  Commerce        73.30   Comm&Mgmt            False                 0                96.8  Mkt&Fin     55.50  42500.0    True 2020-07-04 2020-09-27      3.0

As you can see, this table contains information about students which includes, among other things:

  • Their id and gender

  • Their grades and specializations

  • Their work experience

  • The salary that they where offered

  • The duration and dates of their placement

You will notice that there is data with the following characteristics:

  • There are float, integer, boolean, categorical and datetime values.

  • There are some variables that have missing data. In particular, all the data related to the placement details is missing in the rows where the student was not placed.

Let us use CopulaGAN to learn this data and then sample synthetic data about new students to see how well de model captures the characteristics indicated above. In order to do this you will need to:

  • Import the sdv.tabular.CopulaGAN class and create an instance of it.

  • Call its fit method passing our table.

  • Call its sample method indicating the number of synthetic rows that you want to generate.

In [4]: from sdv.tabular import CopulaGAN

In [5]: model = CopulaGAN()

In [6]: model.fit(data)

Note

Notice that the model fitting process took care of transforming the different fields using the appropriate Reversible Data Transforms to ensure that the data has a format that the underlying CTGANSynthesizer class can handle.

Generate synthetic data from the model

Once the modeling has finished you are ready to generate new synthetic data by calling the sample method from your model passing the number of rows that we want to generate.

In [7]: new_data = model.sample(200)

This will return a table identical to the one which the model was fitted on, but filled with new data which resembles the original one.

In [8]: new_data.head()
Out[8]: 
   student_id gender  second_perc  high_perc high_spec  degree_perc degree_type  work_experience  experience_years  employability_perc mba_spec   mba_perc        salary  placed start_date   end_date duration
0       17351      M    84.485656  66.433633   Science    46.186459   Comm&Mgmt            False                 0           63.074348   Mkt&HR  66.110219           NaN    True 2020-01-05 2021-04-07     12.0
1       17265      F    84.774956  56.081792  Commerce    55.557085    Sci&Tech            False                 0           88.474646  Mkt&Fin  69.359913           NaN    True 2020-01-03        NaT     12.0
2       17359      F    85.350866  72.875801   Science    56.984539   Comm&Mgmt            False                 0           97.327876   Mkt&HR  58.536167  29660.243675    True 2020-05-04 2020-06-07      6.0
3       17455      M    89.331350  63.229224  Commerce    52.493689   Comm&Mgmt            False                 0           80.057421  Mkt&Fin  72.216692  28666.936764   False 2020-01-06        NaT      3.0
4       17271      F    82.276915  63.903086   Science    49.583515   Comm&Mgmt            False                 0           97.824780   Mkt&HR  63.868849  26773.233200    True 2020-01-06        NaT      6.0

Note

You can control the number of rows by specifying the number of samples in the model.sample(<num_rows>). To test, try model.sample(10000). Note that the original table only had ~200 rows.

Save and Load the model

In many scenarios it will be convenient to generate synthetic versions of your data directly in systems that do not have access to the original data source. For example, if you may want to generate testing data on the fly inside a testing environment that does not have access to your production database. In these scenarios, fitting the model with real data every time that you need to generate new data is feasible, so you will need to fit a model in your production environment, save the fitted model into a file, send this file to the testing environment and then load it there to be able to sample from it.

Let’s see how this process works.

Save and share the model

Once you have fitted the model, all you need to do is call its save method passing the name of the file in which you want to save the model. Note that the extension of the filename is not relevant, but we will be using the .pkl extension to highlight that the serialization protocol used is pickle.

In [9]: model.save('my_model.pkl')

This will have created a file called my_model.pkl in the same directory in which you are running SDV.

Important

If you inspect the generated file you will notice that its size is much smaller than the size of the data that you used to generate it. This is because the serialized model contains no information about the original data, other than the parameters it needs to generate synthetic versions of it. This means that you can safely share this my_model.pkl file without the risc of disclosing any of your real data!

Load the model and generate new data

The file you just generated can be send over to the system where the synthetic data will be generated. Once it is there, you can load it using the CopulaGAN.load method, and then you are ready to sample new data from the loaded instance:

In [10]: loaded = CopulaGAN.load('my_model.pkl')

In [11]: new_data = loaded.sample(200)

Warning

Notice that the system where the model is loaded needs to also have sdv and ctgan installed, otherwise it will not be able to load the model and use it.

Specifying the Primary Key of the table

One of the first things that you may have noticed when looking that demo data is that there is a student_id column which acts as the primary key of the table, and which is supposed to have unique values. Indeed, if we look at the number of times that each value appears, we see that all of them appear at most once:

In [12]: data.student_id.value_counts().max()
Out[12]: 1

However, if we look at the synthetic data that we generated, we observe that there are some values that appear more than once:

In [13]: new_data[new_data.student_id == new_data.student_id.value_counts().index[0]]
Out[13]: 
     student_id gender  second_perc  high_perc high_spec  degree_perc degree_type  work_experience  experience_years  employability_perc mba_spec   mba_perc        salary  placed start_date   end_date duration
23        17264      M    89.173055  70.578807   Science    53.422448   Comm&Mgmt            False                 0           57.528153  Mkt&Fin  65.605384  28878.887639    True 2020-06-18 2020-10-23      NaN
74        17264      M    64.973284  86.128437   Science    50.712619   Comm&Mgmt            False                 0           91.562319   Mkt&HR  64.830177  19614.046522   False 2020-02-21 2021-03-09      NaN
86        17264      M    62.783847  44.388466  Commerce    63.914130   Comm&Mgmt            False                 0           96.888726  Mkt&Fin  55.464247           NaN    True        NaT 2020-03-24      NaN
102       17264      M    89.364595  63.380975  Commerce    61.938792    Sci&Tech            False                 0           83.312928  Mkt&Fin  53.825561  26273.420154    True 2020-01-19 2020-08-22      NaN
123       17264      M    85.611299  62.916063   Science    50.103949    Sci&Tech            False                 0           88.481223  Mkt&Fin  66.161783  23248.629562    True 2020-01-06 2020-11-14      NaN
131       17264      F    70.329905  82.097816   Science    68.840351   Comm&Mgmt            False                 0           96.203923   Mkt&HR  54.615575  23141.950297    True 2020-01-13 2020-09-04      6.0
149       17264      M    89.155153  65.996167  Commerce    69.357639   Comm&Mgmt            False                 0           73.153274  Mkt&Fin  67.405330  35514.830452    True 2020-03-01 2020-08-15      3.0
150       17264      M    76.767618  71.328677   Science    57.438650    Sci&Tech            False                 0           77.225140   Mkt&HR  69.670076  19631.951726    True 2020-02-14 2021-02-22      6.0
162       17264      F    87.595619  63.887684   Science    64.153801   Comm&Mgmt             True                 0           85.300731   Mkt&HR  67.123881  18264.849956    True 2020-01-08 2020-09-16      NaN

This happens because the model was not notified at any point about the fact that the student_id had to be unique, so when it generates new data it will provoke collisions sooner or later. In order to solve this, we can pass the argument primary_key to our model when we create it, indicating the name of the column that is the index of the table.

In [14]: model = CopulaGAN(
   ....:     primary_key='student_id'
   ....: )
   ....: 

In [15]: model.fit(data)

In [16]: new_data = model.sample(200)

In [17]: new_data.head()
Out[17]: 
   student_id gender  second_perc  high_perc high_spec  degree_perc degree_type  work_experience  experience_years  employability_perc mba_spec   mba_perc        salary  placed start_date   end_date duration
0           0      M    55.587215  61.309286      Arts    48.913129   Comm&Mgmt            False                 0           53.155713  Mkt&Fin  71.485060  52165.972432    True 2020-09-17        NaT      3.0
1           1      M    58.903340  66.514610  Commerce    74.931265    Sci&Tech            False                 1           50.449068   Mkt&HR  70.587148  31183.673850    True 2020-01-01 2020-04-10      3.0
2           2      M    60.307064  65.957274  Commerce    64.846480      Others             True                 0           50.000000   Mkt&HR  62.515730  28796.496159    True 2020-02-10 2020-04-07      6.0
3           3      M    44.994790  58.688502  Commerce    68.418327      Others            False                 1           55.054244  Mkt&Fin  59.036430  21939.590723    True        NaT        NaT      6.0
4           4      M    70.675238  58.357250   Science    50.840781   Comm&Mgmt            False                 1           55.191078   Mkt&HR  74.590156           NaN    True 2020-03-14 2020-10-17     12.0

As a result, the model will learn that this column must be unique and generate a unique sequence of values for the column:

In [18]: new_data.student_id.value_counts().max()
Out[18]: 1

Anonymizing Personally Identifiable Information (PII)

There will be many cases where the data will contain Personally Identifiable Information which we cannot disclose. In these cases, we will want our Tabular Models to replace the information within these fields with fake, simulated data that looks similar to the real one but does not contain any of the original values.

Let’s load a new dataset that contains a PII field, the student_placements_pii demo, and try to generate synthetic versions of it that do not contain any of the PII fields.

Note

The student_placements_pii dataset is a modified version of the student_placements dataset with one new field, address, which contains PII information about the students. Notice that this additional address field has been simulated and does not correspond to data from the real users.

In [19]: data_pii = load_tabular_demo('student_placements_pii')

In [20]: data_pii.head()
Out[20]: 
   student_id                                            address gender  second_perc  high_perc high_spec  degree_perc degree_type  work_experience  experience_years  employability_perc mba_spec  mba_perc   salary  placed start_date   end_date duration
0       17264        70304 Baker Turnpike\nEricborough, MS 15086      M        67.00      91.00  Commerce        58.00    Sci&Tech            False                 0                55.0   Mkt&HR     58.80  27000.0    True 2020-07-23 2020-10-12      3.0
1       17265    805 Herrera Avenue Apt. 134\nMaryview, NJ 36510      M        79.33      78.33   Science        77.48    Sci&Tech             True                 1                86.5  Mkt&Fin     66.28  20000.0    True 2020-01-11 2020-04-09      3.0
2       17266        3702 Bradley Island\nNorth Victor, FL 12268      M        65.00      68.00      Arts        64.00   Comm&Mgmt            False                 0                75.0  Mkt&Fin     57.80  25000.0    True 2020-01-26 2020-07-13      6.0
3       17267                   Unit 0879 Box 3878\nDPO AP 42663      M        56.00      52.00   Science        52.00    Sci&Tech            False                 0                66.0   Mkt&HR     59.43      NaN   False        NaT        NaT      NaN
4       17268  96493 Kelly Canyon Apt. 145\nEast Steven, NC 3...      M        85.80      73.60  Commerce        73.30   Comm&Mgmt            False                 0                96.8  Mkt&Fin     55.50  42500.0    True 2020-07-04 2020-09-27      3.0

If we use our tabular model on this new data we will see how the synthetic data that it generates discloses the addresses from the real students:

In [21]: model = CopulaGAN(
   ....:     primary_key='student_id',
   ....: )
   ....: 

In [22]: model.fit(data_pii)

In [23]: new_data_pii = model.sample(200)

In [24]: new_data_pii.head()
Out[24]: 
   student_id                                            address gender  second_perc   high_perc high_spec  degree_perc degree_type  work_experience  experience_years  employability_perc mba_spec   mba_perc        salary  placed start_date   end_date duration
0           0    1350 Tyler Hollow\nNew Jacquelineport, OH 59348      M    85.536004   73.867407   Science    59.903343   Comm&Mgmt            False                 0           64.923488   Mkt&HR  72.281152           NaN    True        NaT 2020-09-21      3.0
1           1  65737 Meyer Junction Suite 154\nWest Steven, N...      M    78.318478  110.525878   Science    43.466670   Comm&Mgmt            False                 0           51.961181   Mkt&HR  61.041276  77172.161950    True 2020-02-09        NaT      3.0
2           2  43733 Sara Forges Suite 447\nWest Sarahmouth, ...      M    52.378793   96.849175  Commerce    51.270064   Comm&Mgmt            False                 0           53.147880  Mkt&Fin  56.829103  29086.093800    True 2020-01-11 2020-09-12      3.0
3           3  65737 Meyer Junction Suite 154\nWest Steven, N...      M    64.891355  104.975062   Science    63.136568   Comm&Mgmt            False                 0           52.623693  Mkt&Fin  59.333750           NaN    True 2020-06-20 2020-10-31      3.0
4           4  081 Carrie Square Apt. 439\nJohnsontown, NM 66991      M    87.327417   92.797528  Commerce    63.796187    Sci&Tech            False                 0           50.000000  Mkt&Fin  62.752135  27771.632648    True        NaT 2021-03-24      3.0

More specifically, we can see how all the addresses that have been generated actually come from the original dataset:

In [25]: new_data_pii.address.isin(data_pii.address).sum()
Out[25]: 200

In order to solve this, we can pass an additional argument anonymize_fields to our model when we create the instance. This anonymize_fields argument will need to be a dictionary that contains:

  • The name of the field that we want to anonymize.

  • The category of the field that we want to use when we generate fake values for it.

The list complete list of possible categories can be seen in the Faker Providers page, and it contains a huge list of concepts such as:

  • name

  • address

  • country

  • city

  • ssn

  • credit_card_number

  • credit_card_expire

  • credit_card_security_code

  • email

  • telephone

In this case, since the field is an e-mail address, we will pass a dictionary indicating the category address

In [26]: model = CopulaGAN(
   ....:     primary_key='student_id',
   ....:     anonymize_fields={
   ....:         'address': 'address'
   ....:     }
   ....: )
   ....: 

In [27]: model.fit(data_pii)

As a result, we can see how the real address values have been replaced by other fake addresses that were not taken from the real data that we learned.

In [28]: new_data_pii = model.sample(200)

In [29]: new_data_pii.head()
Out[29]: 
   student_id                                            address gender  second_perc  high_perc high_spec  degree_perc degree_type  work_experience  experience_years  employability_perc mba_spec   mba_perc        salary  placed start_date   end_date duration
0           0   379 Simon Hills Apt. 864\nSouth Dustin, ID 18410      F    83.876052  60.481488   Science    71.626776   Comm&Mgmt            False                 0           86.234711   Mkt&HR  66.282367           NaN    True 2020-02-11        NaT      NaN
1           1        23147 Kenneth Springs\nEast Jesse, ND 59627      F    65.610008  66.048397  Commerce    73.520366   Comm&Mgmt             True                 0           62.880333  Mkt&Fin  62.044864  37945.093834    True        NaT        NaT      NaN
2           2  654 Sharon Views Apt. 098\nFrederickberg, FL 4...      F    88.878580  67.264524  Commerce    56.067286   Comm&Mgmt            False                 0           60.812253   Mkt&HR  66.486290           NaN    True        NaT 2020-08-15      3.0
3           3           97978 Joanne Curve\nSouth Jose, NC 50021      M    88.862827  69.394390      Arts    63.674363   Comm&Mgmt            False                 0           75.627544  Mkt&Fin  72.064379  25031.505218   False 2020-02-03 2020-08-24      3.0
4           4      671 Paul Neck Suite 109\nGarrettton, CO 39564      F    72.149129  61.380893      Arts    80.519019   Comm&Mgmt            False                 0           89.945357   Mkt&HR  64.307747  28144.703032   False        NaT        NaT      3.0

Which means that none of the original addresses can be found in the sampled data:

In [30]: data_pii.address.isin(new_data_pii.address).sum()
Out[30]: 0

Advanced Usage

Now that we have discovered the basics, let’s go over a few more advanced usage examples and see the different arguments that we can pass to our CopulaGAN Model in order to customize it to our needs.

Exploring the Probability Distributions

During the previous steps, every time we fitted the CopulaGAN it performed the following operations:

  1. Learn the format and data types of the passed data

  2. Transform the non-numerical and null data using Reversible Data Transforms to obtain a fully numerical representation of the data from which we can learn the probability distributions.

  3. Learn the probability distribution of each column from the table

  4. Transform the values of each numerical column by converting them to their marginal distribution CDF values and then applying an inverse CDF transformation of a standard normal on them.

  5. Fit a CTGAN model on the transformed data, which learns how each column is correlated to the others.

After this, when we used the model to generate new data for our table using the sample method, it did:

  1. Sample rows from the CTGAN model.

  2. Revert the sampled values by computing their standard normal CDF and then applying the inverse CDF of their marginal distributions.

  3. Revert the RDT transformations to go back to the original data format.

As you can see, during these steps the Marginal Probability Distributions have a very important role, since the CopulaGAN had to learn and reproduce the individual distributions of each column in our table. We can explore the distributions which the CopulaGAN used to model each column using its get_distributions method:

In [31]: model = CopulaGAN(
   ....:     primary_key='student_id'
   ....: )
   ....: 

In [32]: model.fit(data)

In [33]: distributions = model.get_distributions()

This will return us a dict which contains the name of the distribution class used for each column:

In [34]: distributions
Out[34]: 
{'second_perc': 'copulas.univariate.truncated_gaussian.TruncatedGaussian',
 'high_perc': 'copulas.univariate.log_laplace.LogLaplace',
 'degree_perc': 'copulas.univariate.student_t.StudentTUnivariate',
 'work_experience': 'copulas.univariate.student_t.StudentTUnivariate',
 'experience_years': 'copulas.univariate.gaussian.GaussianUnivariate',
 'employability_perc': 'copulas.univariate.truncated_gaussian.TruncatedGaussian',
 'mba_perc': 'copulas.univariate.gamma.GammaUnivariate',
 'salary#0': 'copulas.univariate.gamma.GammaUnivariate',
 'salary#1': 'copulas.univariate.gaussian.GaussianUnivariate',
 'placed': 'copulas.univariate.gamma.GammaUnivariate',
 'start_date#0': 'copulas.univariate.gamma.GammaUnivariate',
 'start_date#1': 'copulas.univariate.gaussian.GaussianUnivariate',
 'end_date#0': 'copulas.univariate.gamma.GammaUnivariate',
 'end_date#1': 'copulas.univariate.gaussian.GaussianUnivariate'}

Note

In this list we will see multiple distributions for each one of the columns that we have in our data. This is because the RDT transformations used to encode the data numerically often use more than one column to represent each one of the input variables.

Let’s explore the individual distribution of one of the columns in our data to better understand how the CopulaGAN processed them and see if we can improve the results by manually specifying a different distribution. For example, let’s explore the experience_years column by looking at the frequency of its values within the original data:

In [35]: data.experience_years.value_counts()
Out[35]: 
0    141
1     65
2      8
3      1
Name: experience_years, dtype: int64

In [36]: data.experience_years.hist();
../../_images/copulagan_experience_years_1.png

By observing the data we can see that the behavior of the values in this column is very similar to a Gamma or even some types of Beta distribution, where the majority of the values are 0 and the frequency decreases as the values increase.

Was the CopulaGAN able to capture this distribution on its own?

In [37]: distributions['experience_years']
Out[37]: 'copulas.univariate.gaussian.GaussianUnivariate'

It seems that the it was not, as it rather thought that the behavior was closer to a Gaussian distribution. And, as a result, we can see how the generated values now contain negative values which are invalid for this column:

In [38]: new_data.experience_years.value_counts()
Out[38]: 
1    115
0     83
2      2
Name: experience_years, dtype: int64

In [39]: new_data.experience_years.hist();
../../_images/copulagan_experience_years_2.png

Let’s see how we can improve this situation by passing the CopulaGAN the exact distribution that we want it to use for this column.

Setting distributions for indvidual variables

The CopulaGAN class offers the possibility to indicate which distribution to use for each one of the columns in the table, in order to solve situations like the one that we just described. In order to do this, we need to pass a field_distributions argument with dict that indicates, the distribution that we want to use for each column.

Possible values for the distribution argument are:

  • univariate: Let copulas select the optimal univariate distribution. This may result in non-parametric models being used.

  • parametric: Let copulas select the optimal univariate distribution, but restrict the selection to parametric distributions only.

  • bounded: Let copulas select the optimal univariate distribution, but restrict the selection to bounded distributions only. This may result in non-parametric models being used.

  • semi_bounded: Let copulas select the optimal univariate distribution, but restrict the selection to semi-bounded distributions only. This may result in non-parametric models being used.

  • parametric_bounded: Let copulas select the optimal univariate distribution, but restrict the selection to parametric and bounded distributions only.

  • parametric_semi_bounded: Let copulas select the optimal univariate distribution, but restrict the selection to parametric and semi-bounded distributions only.

  • gaussian: Use a Gaussian distribution.

  • gamma: Use a Gamma distribution.

  • beta: Use a Beta distribution.

  • student_t: Use a Student T distribution.

  • gaussian_kde: Use a GaussianKDE distribution. This model is non-parametric, so using this will make get_parameters unusable.

  • truncated_gaussian: Use a Truncated Gaussian distribution.

Let’s see what happens if we make the CopulaGAN use the gamma distribution for our column.

In [40]: model = CopulaGAN(
   ....:     primary_key='student_id',
   ....:     field_distributions={
   ....:         'experience_years': 'gamma'
   ....:     }
   ....: )
   ....: 

In [41]: model.fit(data)

After this, we can see how the CopulaGAN used the indicated distribution for the experience_years column

In [42]: model.get_distributions()['experience_years']
Out[42]: 'copulas.univariate.gamma.GammaUnivariate'

And, as a result, now we can see how the generated data now have a behavior which is closer to the original data and always stays within the valid values range.

In [43]: new_data = model.sample(len(data))

In [44]: new_data.experience_years.value_counts()
Out[44]: 
0    178
1     27
2      9
4      1
Name: experience_years, dtype: int64

In [45]: new_data.experience_years.hist();
../../_images/copulagan_experience_years_3.png

Note

Even though there are situations like the one show above where manually choosing a distribution seems to give better results, in most cases the CopulaGAN will be able to find the optimal distribution on its own, making this manual search of the marginal distributions necessary on very little occasions.

How to modify the CopulaGAN Hyperparameters?

A part from the arguments explained above, CopulaGAN has a number of additional hyperparameters that control its learning behavior and can impact on the performance of the model, both in terms of quality of the generated data and computational time:

  • epochs and batch_size: these arguments control the number of iterations that the model will perform to optimize its parameters, as well as the number of samples used in each step. Its default values are 300 and 500 respectively, and batch_size needs to always be a value which is multiple of 10.

    These hyperparameters have a very direct effect in time the training process lasts but also on the performance of the data, so for new datasets, you might want to start by setting a low value on both of them to see how long the training process takes on your data and later on increase the number to acceptable values in order to improve the performance.

  • log_frequency: Whether to use log frequency of categorical levels in conditional sampling. It defaults to True. This argument affects how the model processes the frequencies of the categorical values that are used to condition the rest of the values. In some cases, changing it to False could lead to better performance.

  • embedding_dim (int): Size of the random sample passed to the Generator. Defaults to 128.

  • generator_dim (tuple or list of ints): Size of the output samples for each one of the Residuals. A Resiudal Layer will be created for each one of the values provided. Defaults to (256, 256).

  • discriminator_dim (tuple or list of ints): Size of the output samples for each one of the Discriminator Layers. A Linear Layer will be created for each one of the values provided. Defaults to (256, 256).

  • generator_lr (float): Learning rate for the generator. Defaults to 2e-4.

  • generator_decay (float): Generator weight decay for the Adam Optimizer. Defaults to 1e-6.

  • discriminator_lr (float): Learning rate for the discriminator. Defaults to 2e-4.

  • discriminator_decay (float): Discriminator weight decay for the Adam Optimizer. Defaults to 1e-6.

  • discriminator_steps (int): Number of discriminator updates to do for each generator update. From the WGAN paper: https://arxiv.org/abs/1701.07875. WGAN paper default is 5. Default used is 1 to match original CTGAN implementation.

  • verbose: Whether to print fit progress on stdout. Defaults to False.

Warning

Notice that the value that you set on the batch_size argument must always be a multiple of 10!

As an example, we will try to fit the CopulaGAN model slightly increasing the number of epochs, reducing the batch_size, adding one additional layer to the models involved and using a smaller wright decay.

Before we start, we will evaluate the quality of the previously generated data using the sdv.evaluation.evaluate function

In [46]: from sdv.evaluation import evaluate

In [47]: evaluate(new_data, data)
Out[47]: 0.5098086509468629

Afterwards, we create a new instance of the CopulaGAN model with the hyperparameter values that we want to use

In [48]: model = CopulaGAN(
   ....:     primary_key='student_id',
   ....:     epochs=500,
   ....:     batch_size=100,
   ....:     generator_dim=(256, 256, 256),
   ....:     discriminator_dim=(256, 256, 256)
   ....: )
   ....: 

And fit to our data.

In [49]: model.fit(data)

Finally, we are ready to generate new data and evaluate the results.

In [50]: new_data = model.sample(len(data))

In [51]: evaluate(new_data, data)
Out[51]: 0.5094647272650655

As we can see, in this case these modifications changed the obtained results slightly, but they did neither introduce dramatic changes in the performance.

How do I specify constraints?

If you look closely at the data you may notice that some properties were not completely captured by the model. For example, you may have seen that sometimes the model produces an experience_years number greater than 0 while also indicating that work_experience is False. These type of properties are what we call Constraints and can also be handled using SDV. For further details about them please visit the Handling Constraints guide.

Can I evaluate the Synthetic Data?

A very common question when someone starts using SDV to generate synthetic data is: “How good is the data that I just generated?”

In order to answer this question, SDV has a collection of metrics and tools that allow you to compare the real that you provided and the synthetic data that you generated using SDV or any other tool.

You can read more about this in the Synthetic Data Evaluation guide.