Source code for sdv.tabular.copulas

"""Wrappers around copulas models."""

import logging
import warnings

import copulas
import copulas.multivariate
import copulas.univariate
import numpy as np
import scipy

from sdv.metadata import Table
from sdv.tabular.base import BaseTabularModel, NonParametricError
from sdv.tabular.utils import flatten_dict, unflatten_dict

LOGGER = logging.getLogger(__name__)


[docs]class GaussianCopula(BaseTabularModel): """Model wrapping ``copulas.multivariate.GaussianMultivariate`` copula. Args: field_names (list[str]): List of names of the fields that need to be modeled and included in the generated output data. Any additional fields found in the data will be ignored and will not be included in the generated output. If ``None``, all the fields found in the data are used. field_types (dict[str, dict]): Dictinary specifying the data types and subtypes of the fields that will be modeled. Field types and subtypes combinations must be compatible with the SDV Metadata Schema. field_transformers (dict[str, str]): Dictinary specifying which transformers to use for each field. Available transformers are: * ``FloatFormatter``: Uses a ``FloatFormatter`` for numerical data. * ``FrequencyEncoder``: Uses a ``FrequencyEncoder`` without gaussian noise. * ``FrequencyEncoder_noised``: Uses a ``FrequencyEncoder`` adding gaussian noise. * ``OneHotEncoder``: Uses a ``OneHotEncoder``. * ``LabelEncoder``: Uses a ``LabelEncoder`` without gaussian nose. * ``LabelEncoder_noised``: Uses a ``LabelEncoder`` adding gaussian noise. * ``BinaryEncoder``: Uses a ``BinaryEncoder``. * ``UnixTimestampEncoder``: Uses a ``UnixTimestampEncoder``. anonymize_fields (dict[str, str]): Dict specifying which fields to anonymize and what faker category they belong to. primary_key (str): Name of the field which is the primary key of the table. constraints (list[Constraint, dict]): List of Constraint objects or dicts. table_metadata (dict or metadata.Table): Table metadata instance or dict representation. If given alongside any other metadata-related arguments, an exception will be raised. If not given at all, it will be built using the other arguments or learned from the data. field_distributions (dict): Dictionary that maps field names from the table that is being modeled with the distribution that needs to be used. The distributions can be passed as either a ``copulas.univariate`` instance or as one of the following values: * ``gaussian``: Use a Gaussian distribution. * ``gamma``: Use a Gamma distribution. * ``beta``: Use a Beta distribution. * ``student_t``: Use a Student T distribution. * ``gaussian_kde``: Use a GaussianKDE distribution. This model is non-parametric, so using this will make ``get_parameters`` unusable. * ``truncated_gaussian``: Use a Truncated Gaussian distribution. default_distribution (copulas.univariate.Univariate or str): Copulas univariate distribution to use by default. To choose from the list of possible ``field_distribution`` values. Defaults to ``truncated_gaussian``. categorical_transformer (str): Type of transformer to use for the categorical variables, which must be one of the following values: * ``OneHotEncoder``: Apply a ``OneHotEncoder`` to the categorical column, which replaces the column with one boolean column for each possible category, indicating whether each row had that value or not. * ``LabelEncoder``: Apply a ``LabelEncoder``, which replaces the value of each category with an integer value that acts as its *label*. * ``LabelEncoder_noised``: Apply a ``LabelEncoder``, which replaces the value of each category with an integer value that acts as its *label*. * ``FrequencyEncoder``: Apply ``FrequencyEncoder``, which replaces each categorical value with a float number in the `[0, 1]` range which is inversely proportional to the frequency of that category. * ``FrequencyEncoder_noised``: Apply a ``FrequencyEncoder`` with the ``add_noise`` argument set to ``True``, which makes it add gaussian noise around each value. Defaults to ``FrequencyEncoder_noised``. learn_rounding_scheme (bool): Define rounding scheme for ``FloatFormatter``. If ``True``, the data returned by ``reverse_transform`` will be rounded to that place. Defaults to ``True``. enforce_min_max_values (bool): Specify whether or not to clip the data returned by ``reverse_transform`` of the numerical transformer, ``FloatFormatter``, to the min and max values seen during ``fit``. Defaults to ``True``. """ _field_distributions = None _default_distribution = None _categorical_transformer = None _model = None _DISTRIBUTIONS = { 'gaussian': copulas.univariate.GaussianUnivariate, 'gamma': copulas.univariate.GammaUnivariate, 'beta': copulas.univariate.BetaUnivariate, 'student_t': copulas.univariate.StudentTUnivariate, 'gaussian_kde': copulas.univariate.GaussianKDE, 'truncated_gaussian': copulas.univariate.TruncatedGaussian, } _DEFAULT_DISTRIBUTION = _DISTRIBUTIONS['truncated_gaussian'] _DEFAULT_TRANSFORMER = 'FrequencyEncoder_noised' @classmethod def _validate_distribution(cls, distribution): if not isinstance(distribution, str): return distribution if distribution in cls._DISTRIBUTIONS: return cls._DISTRIBUTIONS[distribution] try: copulas.get_instance(distribution) return distribution except (ValueError, ImportError): error_message = 'Invalid distribution specification {}'.format(distribution) raise ValueError(error_message) from None
[docs] def __init__(self, field_names=None, field_types=None, field_transformers=None, anonymize_fields=None, primary_key=None, constraints=None, table_metadata=None, field_distributions=None, default_distribution=None, categorical_transformer=None, learn_rounding_scheme=True, enforce_min_max_values=True): if isinstance(table_metadata, dict): table_metadata = Table.from_dict(table_metadata) if table_metadata: model_kwargs = table_metadata.get_model_kwargs(self.__class__.__name__) if model_kwargs: if field_distributions is None: field_distributions = model_kwargs['field_distributions'] if default_distribution is None: default_distribution = model_kwargs['default_distribution'] if categorical_transformer is None: categorical_transformer = model_kwargs['categorical_transformer'] if field_distributions and not isinstance(field_distributions, dict): raise TypeError('field_distributions can only be None or a dict instance') self._field_distributions = { field: self._validate_distribution(distribution) for field, distribution in (field_distributions or {}).items() } self._default_distribution = ( self._validate_distribution(default_distribution) or self._DEFAULT_DISTRIBUTION ) self._categorical_transformer = categorical_transformer or self._DEFAULT_TRANSFORMER self._DTYPE_TRANSFORMERS = {'O': self._categorical_transformer} super().__init__( field_names=field_names, field_types=field_types, field_transformers=field_transformers, anonymize_fields=anonymize_fields, primary_key=primary_key, constraints=constraints, table_metadata=table_metadata, learn_rounding_scheme=learn_rounding_scheme, enforce_min_max_values=enforce_min_max_values ) self._metadata.set_model_kwargs(self.__class__.__name__, { 'field_distributions': field_distributions, 'default_distribution': default_distribution, 'categorical_transformer': categorical_transformer, })
[docs] def get_distributions(self): """Get the marginal distributions used by this copula. Returns: dict: Dictionary containing the distributions used or detected for each column. """ parameters = self._model.to_dict() univariates = parameters['univariates'] columns = parameters['columns'] distributions = {} for column, univariate in zip(columns, univariates): distributions[column] = univariate['type'] return distributions
def _update_metadata(self): """Add arguments needed to reproduce this model to the Metadata. Additional arguments include: - Distribution found for each column - categorical_transformer """ class_name = self.__class__.__name__ distributions = self.get_distributions() self._metadata.set_model_kwargs(class_name, { 'field_distributions': distributions, 'default_distribution': self._default_distribution, 'categorical_transformer': self._categorical_transformer, }) def _fit(self, table_data): """Fit the model to the table. Args: table_data (pandas.DataFrame): Data to be fitted. """ for column in table_data.columns: if column not in self._field_distributions: # Check if the column is a derived column. self._field_distributions[column] = self._field_distributions.get( column, self._default_distribution) self._model = copulas.multivariate.GaussianMultivariate( distribution=self._field_distributions) LOGGER.debug('Fitting %s to table %s; shape: %s', self._model.__class__.__name__, self._metadata.name, table_data.shape) with warnings.catch_warnings(): warnings.filterwarnings('ignore', module='scipy') self._model.fit(table_data) self._update_metadata() def _sample(self, num_rows, conditions=None): """Sample the indicated number of rows from the model. Args: num_rows (int): Amount of rows to sample. conditions (dict): If specified, this dictionary maps column names to the column value. Then, this method generates `num_rows` samples, all of which are conditioned on the given variables. Returns: pandas.DataFrame: Sampled data. """ return self._model.sample(num_rows, conditions=conditions) def _set_random_state(self, random_state): """Set the random state of the model's random number generator. Args: random_state (int, np.random.RandomState, or None): Seed or RandomState to use. """ self._model.set_random_state(random_state)
[docs] def get_likelihood(self, table_data): """Get the likelihood of each row belonging to this table.""" transformed = self._metadata.transform(table_data) return self._model.probability_density(transformed)
def _get_parameters(self): """Get copula model parameters. Compute model ``covariance`` and ``distribution.std`` before it returns the flatten dict. Returns: dict: Copula parameters. Raises: NonParametricError: If a non-parametric distribution has been used. """ for univariate in self._model.univariates: univariate_type = type(univariate) if univariate_type is copulas.univariate.Univariate: univariate = univariate._instance if univariate.PARAMETRIC == copulas.univariate.ParametricType.NON_PARAMETRIC: raise NonParametricError("This GaussianCopula uses non parametric distributions") params = self._model.to_dict() covariance = list() for index, row in enumerate(params['covariance'][1:]): covariance.append(row[:index + 1]) params['covariance'] = covariance params['univariates'] = dict(zip(params.pop('columns'), params['univariates'])) return flatten_dict(params) @staticmethod def _get_nearest_correlation_matrix(matrix): """Find the nearest correlation matrix. If the given matrix is not Positive Semi-definite, which means that any of its eigenvalues is negative, find the nearest PSD matrix by setting the negative eigenvalues to 0 and rebuilding the matrix from the same eigenvectors and the modified eigenvalues. After this, the matrix will be PSD but may not have 1s in the diagonal, so the diagonal is replaced by 1s and then the PSD condition of the matrix is validated again, repeating the process until the built matrix contains 1s in all the diagonal and is PSD. After 10 iterations, the last step is skipped and the current PSD matrix is returned even if it does not have all 1s in the diagonal. Insipired by: https://stackoverflow.com/a/63131250 """ eigenvalues, eigenvectors = scipy.linalg.eigh(matrix) negative = eigenvalues < 0 identity = np.identity(len(matrix)) iterations = 0 while np.any(negative): eigenvalues[negative] = 0 matrix = eigenvectors.dot(np.diag(eigenvalues)).dot(eigenvectors.T) if iterations >= 10: break matrix = matrix - matrix * identity + identity max_value = np.abs(np.abs(matrix).max()) if max_value > 1: matrix /= max_value eigenvalues, eigenvectors = scipy.linalg.eigh(matrix) negative = eigenvalues < 0 iterations += 1 return matrix @classmethod def _rebuild_correlation_matrix(cls, triangular_covariance): """Rebuild a valid correlation matrix from its lower half triangle. The input of this function is a list of lists of floats of size 1, 2, 3...n-1: [[c_{2,1}], [c_{3,1}, c_{3,2}], ..., [c_{n,1},...,c_{n,n-1}]] Corresponding to the values from the lower half of the original correlation matrix, **excluding** the diagonal. The output is the complete correlation matrix reconstructed using the given values and scaled to the :math:`[-1, 1]` range if necessary. Args: triangle_covariange (list[list[float]]): A list that contains lists of floats of size 1, 2, 3... up to ``n-1``, where ``n`` is the size of the target covariance matrix. Returns: numpy.ndarray: rebuilt correlation matrix. """ zero = [0.0] size = len(triangular_covariance) + 1 left = np.zeros((size, size)) right = np.zeros((size, size)) for idx, values in enumerate(triangular_covariance): values = values + zero * (size - idx - 1) left[idx + 1, :] = values right[:, idx + 1] = values correlation = left + right max_value = np.abs(correlation).max() if max_value > 1: correlation /= max_value correlation += np.identity(size) return cls._get_nearest_correlation_matrix(correlation).tolist() def _rebuild_gaussian_copula(self, model_parameters): """Rebuild the model params to recreate a Gaussian Multivariate instance. Args: model_parameters (dict): Sampled and reestructured model parameters. Returns: dict: Model parameters ready to recreate the model. """ columns = list() univariates = list() for column, univariate in model_parameters['univariates'].items(): columns.append(column) univariate['type'] = self._field_distributions[column] if 'scale' in univariate: univariate['scale'] = max(0, univariate['scale']) univariates.append(univariate) model_parameters['univariates'] = univariates model_parameters['columns'] = columns covariance = model_parameters.get('covariance') if covariance: model_parameters['covariance'] = self._rebuild_correlation_matrix(covariance) else: model_parameters['covariance'] = [[1.0]] return model_parameters def _set_parameters(self, parameters): """Set copula model parameters. Args: dict: Copula flatten parameters. """ parameters = unflatten_dict(parameters) parameters = self._rebuild_gaussian_copula(parameters) self._model = copulas.multivariate.GaussianMultivariate.from_dict(parameters)